If it's not what You are looking for type in the equation solver your own equation and let us solve it.
160-32t^2=0
a = -32; b = 0; c = +160;
Δ = b2-4ac
Δ = 02-4·(-32)·160
Δ = 20480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20480}=\sqrt{4096*5}=\sqrt{4096}*\sqrt{5}=64\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{5}}{2*-32}=\frac{0-64\sqrt{5}}{-64} =-\frac{64\sqrt{5}}{-64} =-\frac{\sqrt{5}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{5}}{2*-32}=\frac{0+64\sqrt{5}}{-64} =\frac{64\sqrt{5}}{-64} =\frac{\sqrt{5}}{-1} $
| 3x-7=x-2+9 | | 1-9w=23+3w | | 0.085x18=1.53 | | -3(3+c)+4(c-6)=-4 | | -7/3=-3/5v-7/2 | | 2(x―10)=50 | | 2.6t=-20 | | (1/3)y-3=4-(5/3)y | | 4(x+1)-3=2x+2(1+x) | | Nx8=168 | | (5+3i)−(8+19i)=0 | | 8(3)^t/6=1000000 | | 3xN=309 | | (3+5x)+(3x+1)=180 | | 1/3y-3=4-5/3y | | 5(3y+12=-15 | | 2y–9=y-15 | | -6(x-9)+2=56 | | x+(2—3x−15)=180 | | 17+3=-5(6x-4) | | 9(x-11)=-81 | | (1/2)-(1/9)y=(8/9) | | 4+9(5m-9)=-8(6m-2) | | -7(x+9)=-28 | | −6c+36=−48 | | 4(-t+8)=-8+t-10 | | 7=4(j+16)+3 | | -(x+12)=20 | | (5)360=x | | -2.8(v+1.4)+2.2=-2.84 | | 1/8-1/3x=7/3 | | 2(u+-2)+2.02=2.02 |